
Lecture 16

Dijkstra (contd.), Flow Networks

Source: Introduction to Algorithms, CLRS and Kleinberg & Tardos

r

s t

z

x

w

y

S V∖S

Computed values in in an efficient way.π[v] V∖S

Dijkstra’s Algorithm: Optimization

r

s t

z

x

w

y

S V∖S

d[s] = 0

Computed values in in an efficient way.π[v] V∖S

Dijkstra’s Algorithm: Optimization

r

s t

z

x

w

y

S V∖S

d[s] = 0 π[z] = ∞,

Computed values in in an efficient way.π[v] V∖S

Dijkstra’s Algorithm: Optimization

π[y] = ∞, π[t] = ∞, π[w] = ∞,

π[x] = ∞, π[r] = ∞

r

s t

z

x

w

y

S V∖S

d[s] = 0 π[z] = ∞,

Computed values in in an efficient way.π[v] V∖S

Dijkstra’s Algorithm: Optimization

7

3

5

π[y] = ∞, π[t] = ∞, π[w] = ∞,

π[x] = ∞, π[r] = ∞

r

s t

z

x

w

y

S V∖S

d[s] = 0 π[z] = 7,

Computed values in in an efficient way.π[v] V∖S

Dijkstra’s Algorithm: Optimization

7

3

5

π[y] = ∞, π[t] = ∞, π[w] = ∞,

π[x] = ∞, π[r] = ∞

r

s t

z

x

w

y

S V∖S

d[s] = 0 π[z] = 7,

Computed values in in an efficient way.π[v] V∖S

Dijkstra’s Algorithm: Optimization

7

3

5

π[y] = ∞, π[t] = 3, π[w] = ∞,

π[x] = ∞, π[r] = ∞

r

s t

z

x

w

y

S V∖S

d[s] = 0 π[z] = 7,

Computed values in in an efficient way.π[v] V∖S

Dijkstra’s Algorithm: Optimization

7

3

5

π[y] = ∞, π[t] = 3, π[w] = ∞,

π[x] = ∞, π[r] = 5

r

s t

z

x

w
y

S V∖S

 d[s] = 0, d[t] = 3

Computed values in in an efficient way.π[v] V∖S

Dijkstra’s Algorithm: Optimization

π[z] = 7, π[y] = ∞, π[w] = ∞,

π[x] = ∞, π[r] = 5

r

s t

z

x

w
y

S V∖S

 d[s] = 0, d[t] = 3

Computed values in in an efficient way.π[v] V∖S

Dijkstra’s Algorithm: Optimization

2

3

1

π[z] = 7, π[y] = ∞, π[w] = ∞,

π[x] = ∞, π[r] = 5

r

s t

z

x

w
y

S V∖S

 d[s] = 0, d[t] = 3

Computed values in in an efficient way.π[v] V∖S

Dijkstra’s Algorithm: Optimization

2

3

1

π[z] = 5, π[y] = ∞, π[w] = ∞,

π[x] = ∞, π[r] = 5

r

s t

z

x

w
y

S V∖S

 d[s] = 0, d[t] = 3

Computed values in in an efficient way.π[v] V∖S

Dijkstra’s Algorithm: Optimization

2

3

1

π[z] = 5, π[y] = ∞, π[w] = 6,

π[x] = ∞, π[r] = 5

r

s t

z

x

w
y

S V∖S

 d[s] = 0, d[t] = 3

Computed values in in an efficient way.π[v] V∖S

Dijkstra’s Algorithm: Optimization

2

3

1

π[z] = 5, π[y] = ∞, π[w] = 6,

π[x] = ∞, π[r] = 4

r

s t

z

x

w
y

S V∖S

 d[s] = 0, d[t] = 3

Computed values in in an efficient way.π[v] V∖S

Dijkstra’s Algorithm: Optimization

2

3

1

π[z] = 5, π[y] = ∞, π[w] = 6,

π[x] = ∞, π[r] = 4

What data structure is suitable to keep updating values and removing the one with minimum?π

Dijkstra’s Algorithm: Implementation

Dijkstra’s Algorithm: Implementation

On we are performing two operations:V∖S

Dijkstra’s Algorithm: Implementation

On we are performing two operations:V∖S

• Maintaining and updating values.π

Dijkstra’s Algorithm: Implementation

On we are performing two operations:V∖S

• Maintaining and updating values.π

• Removing the element with minimum value.π

Dijkstra’s Algorithm: Implementation

On we are performing two operations:V∖S

Min-priority queue can perform the above operations in time.O(log n)

• Maintaining and updating values.π

• Removing the element with minimum value.π

Dijkstra’s Algorithm: Implementation

On we are performing two operations:V∖S

• Insert : Inserts element element with a in (Q, u) u key Q

Min-priority queue can perform the above operations in time.O(log n)

• Maintaining and updating values.π

• Removing the element with minimum value.π

Dijkstra’s Algorithm: Implementation

On we are performing two operations:V∖S

• Insert : Inserts element element with a in (Q, u) u key Q

• Extract-Min : Removes the element with minimum from . (Q) key Q

Min-priority queue can perform the above operations in time.O(log n)

• Maintaining and updating values.π

• Removing the element with minimum value.π

Dijkstra’s Algorithm: Implementation

On we are performing two operations:V∖S

• Insert : Inserts element element with a in (Q, u) u key Q

• Extract-Min : Removes the element with minimum from . (Q) key Q

• Decrease-Key : Decreases the of to .(Q, u, d) key u d

Min-priority queue can perform the above operations in time.O(log n)

• Maintaining and updating values.π

• Removing the element with minimum value.π

Dijkstra’s Algorithm: Implementation

On we are performing two operations:V∖S

• Insert : Inserts element element with a in (Q, u) u key Q

• Extract-Min : Removes the element with minimum from . (Q) key Q

• Decrease-Key : Decreases the of to .(Q, u, d) key u d

Min-priority queue can perform the above operations in time.O(log n)

Idea: Form a min-priority queue of where s are values.V∖S key π

• Maintaining and updating values.π

• Removing the element with minimum value.π

Dijkstra’s Algorithm: Pseudocode

Dijkstra’s Algorithm: Pseudocode
 Dijkstra : (G, s)

Dijkstra’s Algorithm: Pseudocode
 Dijkstra : (G, s)
 1. // distance is computed and is a min-priority queueS = ∅, Q = ∅ S = {u ∣ u′￼s } Q

Dijkstra’s Algorithm: Pseudocode
 Dijkstra : (G, s)
 1. // distance is computed and is a min-priority queueS = ∅, Q = ∅ S = {u ∣ u′￼s } Q
 2. Create array , // for storing distance and valuesd[1 : |V |] π[1 : |V |] π

Dijkstra’s Algorithm: Pseudocode
 Dijkstra : (G, s)
 1. // distance is computed and is a min-priority queueS = ∅, Q = ∅ S = {u ∣ u′￼s } Q
 2. Create array , // for storing distance and valuesd[1 : |V |] π[1 : |V |] π
 3. for each vertex v ∈ V(G)

Dijkstra’s Algorithm: Pseudocode
 Dijkstra : (G, s)
 1. // distance is computed and is a min-priority queueS = ∅, Q = ∅ S = {u ∣ u′￼s } Q
 2. Create array , // for storing distance and valuesd[1 : |V |] π[1 : |V |] π
 3. for each vertex v ∈ V(G)
 4. , Insert // stores vertices with their value as key.d[v] = ∞, π[v] = ∞ (Q, v, π[v]) Q π

Dijkstra’s Algorithm: Pseudocode
 Dijkstra : (G, s)
 1. // distance is computed and is a min-priority queueS = ∅, Q = ∅ S = {u ∣ u′￼s } Q
 2. Create array , // for storing distance and valuesd[1 : |V |] π[1 : |V |] π
 3. for each vertex v ∈ V(G)
 4. , Insert // stores vertices with their value as key.d[v] = ∞, π[v] = ∞ (Q, v, π[v]) Q π
 5. , Decrease-Keyπ[s] = 0 (Q, s,0)

Dijkstra’s Algorithm: Pseudocode
 Dijkstra : (G, s)
 1. // distance is computed and is a min-priority queueS = ∅, Q = ∅ S = {u ∣ u′￼s } Q
 2. Create array , // for storing distance and valuesd[1 : |V |] π[1 : |V |] π
 3. for each vertex v ∈ V(G)
 4. , Insert // stores vertices with their value as key.d[v] = ∞, π[v] = ∞ (Q, v, π[v]) Q π
 5. , Decrease-Keyπ[s] = 0 (Q, s,0)
 6. while Q ≠ ∅

Dijkstra’s Algorithm: Pseudocode
 Dijkstra : (G, s)
 1. // distance is computed and is a min-priority queueS = ∅, Q = ∅ S = {u ∣ u′￼s } Q
 2. Create array , // for storing distance and valuesd[1 : |V |] π[1 : |V |] π
 3. for each vertex v ∈ V(G)
 4. , Insert // stores vertices with their value as key.d[v] = ∞, π[v] = ∞ (Q, v, π[v]) Q π
 5. , Decrease-Keyπ[s] = 0 (Q, s,0)
 6. while Q ≠ ∅
 7. Extract-Min // ’s distance is computedu = (Q) u

Dijkstra’s Algorithm: Pseudocode
 Dijkstra : (G, s)
 1. // distance is computed and is a min-priority queueS = ∅, Q = ∅ S = {u ∣ u′￼s } Q
 2. Create array , // for storing distance and valuesd[1 : |V |] π[1 : |V |] π
 3. for each vertex v ∈ V(G)
 4. , Insert // stores vertices with their value as key.d[v] = ∞, π[v] = ∞ (Q, v, π[v]) Q π
 5. , Decrease-Keyπ[s] = 0 (Q, s,0)
 6. while Q ≠ ∅
 7. Extract-Min // ’s distance is computedu = (Q) u
 8. , // Add to and update its S = S ∪ {u} d[u] = π[u] u S d

Dijkstra’s Algorithm: Pseudocode
 Dijkstra : (G, s)
 1. // distance is computed and is a min-priority queueS = ∅, Q = ∅ S = {u ∣ u′￼s } Q
 2. Create array , // for storing distance and valuesd[1 : |V |] π[1 : |V |] π
 3. for each vertex v ∈ V(G)
 4. , Insert // stores vertices with their value as key.d[v] = ∞, π[v] = ∞ (Q, v, π[v]) Q π
 5. , Decrease-Keyπ[s] = 0 (Q, s,0)
 6. while Q ≠ ∅
 7. Extract-Min // ’s distance is computedu = (Q) u
 8. , // Add to and update its S = S ∪ {u} d[u] = π[u] u S d
 9. for each vertex v ∈ Adj[u]

Dijkstra’s Algorithm: Pseudocode
 Dijkstra : (G, s)
 1. // distance is computed and is a min-priority queueS = ∅, Q = ∅ S = {u ∣ u′￼s } Q
 2. Create array , // for storing distance and valuesd[1 : |V |] π[1 : |V |] π
 3. for each vertex v ∈ V(G)
 4. , Insert // stores vertices with their value as key.d[v] = ∞, π[v] = ∞ (Q, v, π[v]) Q π
 5. , Decrease-Keyπ[s] = 0 (Q, s,0)
 6. while Q ≠ ∅
 7. Extract-Min // ’s distance is computedu = (Q) u
 8. , // Add to and update its S = S ∪ {u} d[u] = π[u] u S d
 9. for each vertex v ∈ Adj[u]
10. if // Recall setting Min π[v] > d[u] + w(u, v) π[v] = (π[v], d[u] + w(u, v))

Dijkstra’s Algorithm: Pseudocode
 Dijkstra : (G, s)
 1. // distance is computed and is a min-priority queueS = ∅, Q = ∅ S = {u ∣ u′￼s } Q
 2. Create array , // for storing distance and valuesd[1 : |V |] π[1 : |V |] π
 3. for each vertex v ∈ V(G)
 4. , Insert // stores vertices with their value as key.d[v] = ∞, π[v] = ∞ (Q, v, π[v]) Q π
 5. , Decrease-Keyπ[s] = 0 (Q, s,0)
 6. while Q ≠ ∅
 7. Extract-Min // ’s distance is computedu = (Q) u
 8. , // Add to and update its S = S ∪ {u} d[u] = π[u] u S d
 9. for each vertex v ∈ Adj[u]
10. if // Recall setting Min π[v] > d[u] + w(u, v) π[v] = (π[v], d[u] + w(u, v))
11. π[v] = d[u] + w(u, v)

Dijkstra’s Algorithm: Pseudocode
 Dijkstra : (G, s)
 1. // distance is computed and is a min-priority queueS = ∅, Q = ∅ S = {u ∣ u′￼s } Q
 2. Create array , // for storing distance and valuesd[1 : |V |] π[1 : |V |] π
 3. for each vertex v ∈ V(G)
 4. , Insert // stores vertices with their value as key.d[v] = ∞, π[v] = ∞ (Q, v, π[v]) Q π
 5. , Decrease-Keyπ[s] = 0 (Q, s,0)
 6. while Q ≠ ∅
 7. Extract-Min // ’s distance is computedu = (Q) u
 8. , // Add to and update its S = S ∪ {u} d[u] = π[u] u S d
 9. for each vertex v ∈ Adj[u]
10. if // Recall setting Min π[v] > d[u] + w(u, v) π[v] = (π[v], d[u] + w(u, v))
11. π[v] = d[u] + w(u, v)
12. Decrease-Key(Q, v, π[v])

Dijkstra’s Algorithm: Pseudocode
 Dijkstra :

 1.

 2. Create array ,

 3. for each vertex

 4. Insert

 5. , Decrease-Key

 6. while

 7. Extract-Min

 8. ,

 9. for each vertex

10. if

11.

12. Decrease-Key

(G, s)
S = ∅, Q = ∅

d[1 : |V |] π[1 : |V |]
v ∈ V(G)

d[v] = ∞, π[v] = ∞, (Q, v, π[v])
π[s] = 0 (Q, s,0)

Q ≠ ∅
u = (Q)
S = S ∪ {u} d[u] = π[u]

v ∈ Adj[u]
π[v] > d[u] + w(u, v)
π[v] = d[u] + w(u, v)

(Q, v, π[v])

Dijkstra’s Algorithm: Pseudocode
 Dijkstra :

 1.

 2. Create array ,

 3. for each vertex

 4. Insert

 5. , Decrease-Key

 6. while

 7. Extract-Min

 8. ,

 9. for each vertex

10. if

11.

12. Decrease-Key

(G, s)
S = ∅, Q = ∅

d[1 : |V |] π[1 : |V |]
v ∈ V(G)

d[v] = ∞, π[v] = ∞, (Q, v, π[v])
π[s] = 0 (Q, s,0)

Q ≠ ∅
u = (Q)
S = S ∪ {u} d[u] = π[u]

v ∈ Adj[u]
π[v] > d[u] + w(u, v)
π[v] = d[u] + w(u, v)

(Q, v, π[v])

What if v ∈ S?

Dijkstra’s Algorithm: Pseudocode
 Dijkstra :

 1.

 2. Create array ,

 3. for each vertex

 4. Insert

 5. , Decrease-Key

 6. while

 7. Extract-Min

 8. ,

 9. for each vertex

10. if

11.

12. Decrease-Key

(G, s)
S = ∅, Q = ∅

d[1 : |V |] π[1 : |V |]
v ∈ V(G)

d[v] = ∞, π[v] = ∞, (Q, v, π[v])
π[s] = 0 (Q, s,0)

Q ≠ ∅
u = (Q)
S = S ∪ {u} d[u] = π[u]

v ∈ Adj[u]
π[v] > d[u] + w(u, v)
π[v] = d[u] + w(u, v)

(Q, v, π[v])

What if v ∈ S? Then line condition will be false as10

Dijkstra’s Algorithm: Pseudocode
 Dijkstra :

 1.

 2. Create array ,

 3. for each vertex

 4. Insert

 5. , Decrease-Key

 6. while

 7. Extract-Min

 8. ,

 9. for each vertex

10. if

11.

12. Decrease-Key

(G, s)
S = ∅, Q = ∅

d[1 : |V |] π[1 : |V |]
v ∈ V(G)

d[v] = ∞, π[v] = ∞, (Q, v, π[v])
π[s] = 0 (Q, s,0)

Q ≠ ∅
u = (Q)
S = S ∪ {u} d[u] = π[u]

v ∈ Adj[u]
π[v] > d[u] + w(u, v)
π[v] = d[u] + w(u, v)

(Q, v, π[v])

What if v ∈ S? Then line condition will be false as10
 became earlier and cannot further decrease.π[v] δ(s, v)

 Dijkstra :

 1.

 2. Create array ,

 3. for each vertex

 4. Insert

 5. , Decrease-Key

 6. while

 7. Extract-Min

 8. ,

 9. for each vertex

10. if

11.

12. Decrease-Key

(G, s)
S = ∅, Q = ∅

d[1 : |V |] π[1 : |V |]
v ∈ V(G)

d[v] = ∞, π[v] = ∞, (Q, v, π[v])
π[s] = 0 (Q, s,0)

Q ≠ ∅
u = (Q)
S = S ∪ {u} d[u] = π[u]

v ∈ Adj[u]
π[v] > d[u] + w(u, v)
π[v] = d[u] + w(u, v)

(Q, v, π[v])

Dijkstra’s Algorithm: Pseudocode

 Dijkstra :

 1.

 2. Create array ,

 3. for each vertex

 4. Insert

 5. , Decrease-Key

 6. while

 7. Extract-Min

 8. ,

 9. for each vertex

10. if

11.

12. Decrease-Key

(G, s)
S = ∅, Q = ∅

d[1 : |V |] π[1 : |V |]
v ∈ V(G)

d[v] = ∞, π[v] = ∞, (Q, v, π[v])
π[s] = 0 (Q, s,0)

Q ≠ ∅
u = (Q)
S = S ∪ {u} d[u] = π[u]

v ∈ Adj[u]
π[v] > d[u] + w(u, v)
π[v] = d[u] + w(u, v)

(Q, v, π[v])

Dijkstra’s Algorithm: Pseudocode

What happens when is ?π[u] ∞

 Dijkstra :

 1.

 2. Create array ,

 3. for each vertex

 4. Insert

 5. , Decrease-Key

 6. while

 7. Extract-Min

 8. ,

 9. for each vertex

10. if

11.

12. Decrease-Key

(G, s)
S = ∅, Q = ∅

d[1 : |V |] π[1 : |V |]
v ∈ V(G)

d[v] = ∞, π[v] = ∞, (Q, v, π[v])
π[s] = 0 (Q, s,0)

Q ≠ ∅
u = (Q)
S = S ∪ {u} d[u] = π[u]

v ∈ Adj[u]
π[v] > d[u] + w(u, v)
π[v] = d[u] + w(u, v)

(Q, v, π[v])

Dijkstra’s Algorithm: Pseudocode

What happens when is ?π[u] ∞
 becoming is fine.d[u] ∞

 Dijkstra :

 1.

 2. Create array ,

 3. for each vertex

 4. Insert

 5. , Decrease-Key

 6. while

 7. Extract-Min

 8. ,

 9. for each vertex

10. if

11.

12. Decrease-Key

(G, s)
S = ∅, Q = ∅

d[1 : |V |] π[1 : |V |]
v ∈ V(G)

d[v] = ∞, π[v] = ∞, (Q, v, π[v])
π[s] = 0 (Q, s,0)

Q ≠ ∅
u = (Q)
S = S ∪ {u} d[u] = π[u]

v ∈ Adj[u]
π[v] > d[u] + w(u, v)
π[v] = d[u] + w(u, v)

(Q, v, π[v])

Dijkstra’s Algorithm: Pseudocode

What happens when is ?π[u] ∞
 becoming is fine.d[u] ∞

Condition of line will be false.10

Dijkstra’s Algorithm: Analysis
 Dijkstra :

 1.

 2. Create array ,

 3. for each vertex

 4. Insert

 5. , Decrease-Key

 6. while

 7. Extract-Min

 8. ,

 9. for each vertex

10. if

11.

12. Decrease-Key

(G, s)
S = ∅, Q = ∅

d[1 : |V |] π[1 : |V |]
v ∈ V(G)

d[v] = ∞, π[v] = ∞, (Q, v, π[v])
π[s] = 0 (Q, s,0)

Q ≠ ∅
u = (Q)
S = S ∪ {u} d[u] = π[u]

v ∈ Adj[u]
π[v] > d[u] + w(u, v)
π[v] = d[u] + w(u, v)

(Q, v, π[v])

Dijkstra’s Algorithm: Analysis

Suppose has vertices and edges.G n m
 Dijkstra :

 1.

 2. Create array ,

 3. for each vertex

 4. Insert

 5. , Decrease-Key

 6. while

 7. Extract-Min

 8. ,

 9. for each vertex

10. if

11.

12. Decrease-Key

(G, s)
S = ∅, Q = ∅

d[1 : |V |] π[1 : |V |]
v ∈ V(G)

d[v] = ∞, π[v] = ∞, (Q, v, π[v])
π[s] = 0 (Q, s,0)

Q ≠ ∅
u = (Q)
S = S ∪ {u} d[u] = π[u]

v ∈ Adj[u]
π[v] > d[u] + w(u, v)
π[v] = d[u] + w(u, v)

(Q, v, π[v])

Dijkstra’s Algorithm: Analysis

Suppose has vertices and edges.G n m

Cost of this loop is O(n)

 Dijkstra :

 1.

 2. Create array ,

 3. for each vertex

 4. Insert

 5. , Decrease-Key

 6. while

 7. Extract-Min

 8. ,

 9. for each vertex

10. if

11.

12. Decrease-Key

(G, s)
S = ∅, Q = ∅

d[1 : |V |] π[1 : |V |]
v ∈ V(G)

d[v] = ∞, π[v] = ∞, (Q, v, π[v])
π[s] = 0 (Q, s,0)

Q ≠ ∅
u = (Q)
S = S ∪ {u} d[u] = π[u]

v ∈ Adj[u]
π[v] > d[u] + w(u, v)
π[v] = d[u] + w(u, v)

(Q, v, π[v])

Dijkstra’s Algorithm: Analysis

Suppose has vertices and edges.G n m

Cost of this loop is O(n)

Cost of this loop is O(n log n + m log n)

 Dijkstra :

 1.

 2. Create array ,

 3. for each vertex

 4. Insert

 5. , Decrease-Key

 6. while

 7. Extract-Min

 8. ,

 9. for each vertex

10. if

11.

12. Decrease-Key

(G, s)
S = ∅, Q = ∅

d[1 : |V |] π[1 : |V |]
v ∈ V(G)

d[v] = ∞, π[v] = ∞, (Q, v, π[v])
π[s] = 0 (Q, s,0)

Q ≠ ∅
u = (Q)
S = S ∪ {u} d[u] = π[u]

v ∈ Adj[u]
π[v] > d[u] + w(u, v)
π[v] = d[u] + w(u, v)

(Q, v, π[v])

Dijkstra’s Algorithm: Analysis

Suppose has vertices and edges.G n m

Cost of this loop is O(n)

Cost of this loop is O(n log n + m log n)
(Every vertex is dequeued at most once, and

when dequeued its adjacency list is traversed.)

 Dijkstra :

 1.

 2. Create array ,

 3. for each vertex

 4. Insert

 5. , Decrease-Key

 6. while

 7. Extract-Min

 8. ,

 9. for each vertex

10. if

11.

12. Decrease-Key

(G, s)
S = ∅, Q = ∅

d[1 : |V |] π[1 : |V |]
v ∈ V(G)

d[v] = ∞, π[v] = ∞, (Q, v, π[v])
π[s] = 0 (Q, s,0)

Q ≠ ∅
u = (Q)
S = S ∪ {u} d[u] = π[u]

v ∈ Adj[u]
π[v] > d[u] + w(u, v)
π[v] = d[u] + w(u, v)

(Q, v, π[v])

Dijkstra’s Algorithm: Analysis

Suppose has vertices and edges.G n m

Cost of this loop is O(n)

Cost of this loop is O(n log n + m log n)
(Every vertex is dequeued at most once, and

when dequeued its adjacency list is traversed.)

Time complexity .= O(n log n + m log n)

 Dijkstra :

 1.

 2. Create array ,

 3. for each vertex

 4. Insert

 5. , Decrease-Key

 6. while

 7. Extract-Min

 8. ,

 9. for each vertex

10. if

11.

12. Decrease-Key

(G, s)
S = ∅, Q = ∅

d[1 : |V |] π[1 : |V |]
v ∈ V(G)

d[v] = ∞, π[v] = ∞, (Q, v, π[v])
π[s] = 0 (Q, s,0)

Q ≠ ∅
u = (Q)
S = S ∪ {u} d[u] = π[u]

v ∈ Adj[u]
π[v] > d[u] + w(u, v)
π[v] = d[u] + w(u, v)

(Q, v, π[v])

 Dijkstra :

 1.

 2. Create array ,

 3. for each vertex

 4. Insert

 5. , Decrease-Key

 6. while

 7. Extract-Min

 8. ,

 9. for each vertex

10. if

11.

12. Decrease-Key

(G, s)
S = ∅, Q = ∅

d[1 : |V |] π[1 : |V |]
v ∈ V(G)

d[v] = ∞, π[v] = ∞, (Q, v, π[v])
π[s] = 0 (Q, s,0)

Q ≠ ∅
u = (Q)
S = S ∪ {u} d[u] = π[u]

v ∈ Adj[u]
π[v] > d[u] + w(u, v)
π[v] = d[u] + w(u, v)

(Q, v, π[v])

Dijkstra’s Algorithm: Analysis

Suppose has vertices and edges.G n m

Cost of this loop is O(n)

Cost of this loop is O(n log n + m log n)
(Every vertex is dequeued at most once, and

when dequeued its adjacency list is traversed.)

Time complexity , when .= O(m log n) m > n

Dijkstra’s Algorithm: DIY

Dijkstra’s Algorithm: DIY

Modify the Dijkstra’s algorithm on the previous slide so that:

Dijkstra’s Algorithm: DIY

Modify the Dijkstra’s algorithm on the previous slide so that:

• It uses only one extra array to calculate distances.d

Dijkstra’s Algorithm: DIY

Modify the Dijkstra’s algorithm on the previous slide so that:

• It uses only one extra array to calculate distances.d

• You can produce shortest paths as well not just distance.

Dijkstra’s Algorithm: History

“What is the shortest way to travel from Rotterdam to Groningen, in general: from given city to given

city. It is the algorithm for the shortest path, which I designed in about twenty minutes. One morning I

was shopping in Amsterdam with my young fiancée, and tired, we sat down on the café terrace to drink a

cup of coffee and I was just thinking about whether I could do this, and I then designed the algorithm for

the shortest path. As I said, it was a twenty-minute invention. In fact, it was published in '59, three years

later. The publication is still readable, it is, in fact, quite nice. One of the reasons that it is so nice was that

I designed it without pencil and paper. I learned later that one of the advantages of designing without

pencil and paper is that you are almost forced to avoid all avoidable complexities. Eventually, that

algorithm became to my great amazement, one of the cornerstones of my fame.”

—  Edsger Dijkstra, in an interview with Philip L. Frana, Communications of the ACM, 2001

Flow Networks

Flow Networks

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

(a)

Flow Networks

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

Figure (a) is flow network of a shipping company, where:

(a)

Flow Networks

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

Figure (a) is flow network of a shipping company, where:

• Vertices represent cities. & are the source & sink cities.s t

(a)

Flow Networks

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

Figure (a) is flow network of a shipping company, where:

• Vertices represent cities. & are the source & sink cities.s t

• The number on any edge is the maximum number of packets that can go from  

 to per day.

(u, v)
u v

(a)

Flow Networks

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

(a)

Flow Networks

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

(a)

Goal: Find the maximum number of packets that can be shipped from if the packets received and s

Flow Networks

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

(a)

Goal: Find the maximum number of packets that can be shipped from if the packets received and s
sent by intermediate cities are equal in numbers.

Flow Networks

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

(a) (b)

Goal: Find the maximum number of packets that can be shipped from if the packets received and s
sent by intermediate cities are equal in numbers.

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20

Flow Networks

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

(a) (b)

Goal: Find the maximum number of packets that can be shipped from if the packets received and s
sent by intermediate cities are equal in numbers.

max packets = 23

w

x

z

y

ts

12/16

12/12

´11/13

0/4
0/9

11/14
4/4

7/7

19/20

Flow Networks

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

Flow Networks

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

Defn: A flow network is a directed graph in which:G = (V, E)

Flow Networks

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

Defn: A flow network is a directed graph in which:G = (V, E)
• Each edge has a nonnegative capacity .(u, v) ∈ E c(u, v) ≥ 0

Flow Networks

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

Defn: A flow network is a directed graph in which:G = (V, E)
• Each edge has a nonnegative capacity .(u, v) ∈ E c(u, v) ≥ 0

• If , then .(u, v) ∈ E (v, u) ∉ E

Flow Networks

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

Defn: A flow network is a directed graph in which:G = (V, E)
• Each edge has a nonnegative capacity .(u, v) ∈ E c(u, v) ≥ 0

• If , then .(u, v) ∈ E (v, u) ∉ E (Reason will become clear soon.)

Flow Networks

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

Defn: A flow network is a directed graph in which:G = (V, E)
• Each edge has a nonnegative capacity .(u, v) ∈ E c(u, v) ≥ 0

• If , then .(u, v) ∈ E (v, u) ∉ E

• If , we define . No self-loops are present.(u, v) ∉ E c(u, v) = 0
(Reason will become clear soon.)

Flow Networks

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

Defn: A flow network is a directed graph in which:G = (V, E)
• Each edge has a nonnegative capacity .(u, v) ∈ E c(u, v) ≥ 0

• If , then .(u, v) ∈ E (v, u) ∉ E

• If , we define . No self-loops are present.(u, v) ∉ E c(u, v) = 0

• Two distinguished vertices: source (no incoming edges) and sink (no outgoing edges).s t

(Reason will become clear soon.)

Flow Networks

w

x

z

y

ts

16

12

13

4
9

14
4

7

20

Defn: A flow network is a directed graph in which:G = (V, E)
• Each edge has a nonnegative capacity .(u, v) ∈ E c(u, v) ≥ 0

• If , then .(u, v) ∈ E (v, u) ∉ E

• If , we define . No self-loops are present.(u, v) ∉ E c(u, v) = 0

• Two distinguished vertices: source (no incoming edges) and sink (no outgoing edges).s t

• For every , some path exists. Hence, .v ∈ V s ↝ v ↝ t |E | ≥ |V | − 1

(Reason will become clear soon.)

