
Lecture 16

Dijkstra (contd.), Flow Networks

Source: Introduction to Algorithms, CLRS and Kleinberg & Tardos
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π[x] = ∞, π[r] = 4

What data structure is suitable to keep updating  values and removing the one with minimum?π
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On  we are performing two operations:V∖S

• Insert : Inserts element element  with a  in (Q, u) u key Q

• Extract-Min : Removes the element with minimum  from . (Q) key Q

• Decrease-Key : Decreases the  of  to .(Q, u, d) key u d

Min-priority queue can perform the above operations in  time.O(log n)

Idea: Form a min-priority queue of  where s are  values.V∖S key π

• Maintaining and updating  values.π

• Removing the element with minimum  value.π
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Dijkstra’s Algorithm: DIY

Modify the Dijkstra’s algorithm on the previous slide so that:

• It uses only one extra array  to calculate distances.d

• You can produce shortest paths as well not just distance.



Dijkstra’s Algorithm: History

“What is the shortest way to travel from Rotterdam to Groningen, in general: from given city to given 

city. It is the algorithm for the shortest path, which I designed in about twenty minutes. One morning I 

was shopping in Amsterdam with my young fiancée, and tired, we sat down on the café terrace to drink a 

cup of coffee and I was just thinking about whether I could do this, and I then designed the algorithm for 

the shortest path. As I said, it was a twenty-minute invention. In fact, it was published in '59, three years 

later. The publication is still readable, it is, in fact, quite nice. One of the reasons that it is so nice was that 

I designed it without pencil and paper. I learned later that one of the advantages of designing without 

pencil and paper is that you are almost forced to avoid all avoidable complexities. Eventually, that 

algorithm became to my great amazement, one of the cornerstones of my fame.”

—  Edsger Dijkstra, in an interview with Philip L. Frana, Communications of the ACM, 2001
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Figure (a) is flow network of a shipping company, where:

• Vertices represent cities.  &  are the source & sink cities.s t

• The number on any  edge is the maximum number of packets that can go from  

 to  per day.

(u, v)
u v
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Goal: Find the maximum number of packets that can be shipped from  if the packets received and s
sent by intermediate cities are equal in numbers.

# max packets  = 23
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Defn: A flow network  is a directed graph in which:G = (V, E)
• Each edge  has a nonnegative capacity .(u, v) ∈ E c(u, v) ≥ 0

• If , then .(u, v) ∈ E (v, u) ∉ E

• If , we define . No self-loops are present.(u, v) ∉ E c(u, v) = 0

• Two distinguished vertices: source  (no incoming edges) and sink  (no outgoing edges).s t

• For every , some  path exists. Hence, .v ∈ V s ↝ v ↝ t |E | ≥ |V | − 1

(Reason will become clear soon.)


