Lecture 16

Dijkstra (contd.), Flow Networks

Source: Introduction to Algorithms, CLRS and Kleinberg & Tardos
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Dijkstra’s Algorithm: Optimization

Computed 7z[v] values in V\S in an efficient way.

S VAS
2
(=
1
dls] =0,d[t] =3 nlz] =5, aly] = oo, #|lw] =6,

|x] = oo, z|r| =4

What data structure is suitable to keep updating 7 values and removing the one with minimum?



Dijkstra’s Algorithm: Implementation



Dijkstra’s Algorithm: Implementation

On V\S we are performing two operations:



Dijkstra’s Algorithm: Implementation

On V\S we are performing two operations:

® Maintaining and updating 7 values.



Dijkstra’s Algorithm: Implementation

On V\S we are performing two operations:
® Maintaining and updating 7 values.

® Removing the element with minimum 7 value.



Dijkstra’s Algorithm: Implementation

On V\S we are performing two operations:
® Maintaining and updating 7 values.

® Removing the element with minimum 7 value.

Min-priority queue can perform the above operations in O(log n) time.



Dijkstra’s Algorithm: Implementation

On V\S we are performing two operations:
® Maintaining and updating 7 values.

® Removing the element with minimum 7 value.

Min-priority queue can perform the above operations in O(log n) time.

e Insert((Q, u): Inserts element element u with a key in O



Dijkstra’s Algorithm: Implementation

On V\S we are performing two operations:
® Maintaining and updating 7 values.

® Removing the element with minimum 7 value.

Min-priority queue can perform the above operations in O(log n) time.

e Insert((Q, u): Inserts element element u with a key in O

e Extract-Min(()): Removes the element with minimum key from Q.



Dijkstra’s Algorithm: Implementation

On V\S we are performing two operations:
® Maintaining and updating 7 values.

® Removing the element with minimum 7 value.

Min-priority queue can perform the above operations in O(log n) time.

e Insert((Q, u): Inserts element element u with a key in O

e Extract-Min(()): Removes the element with minimum key from Q.

® Decrease-Key(Q, u, d): Decreases the key of u to d.



Dijkstra’s Algorithm: Implementation

On V\S we are performing two operations:
® Maintaining and updating 7 values.

® Removing the element with minimum 7 value.

Min-priority queue can perform the above operations in O(log n) time.

e Insert((Q, u): Inserts element element u with a key in O

e Extract-Min(()): Removes the element with minimum key from Q.

® Decrease-Key(Q, u, d): Decreases the key of u to d.

Idea: Form a min-priority queue of V\S§ where keys are 7 values.



Dijkstra’s Algorithm: Pseudocode




Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):
1. $=0,0=0 /7S = {u | u's distance is computed} and Q is a min-priority queue



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):
1. $=0,0=0 /7S = {u | u's distance is computed} and Q is a min-priority queue
2. Create array d[]1 : |V|], =[1 : | V]|] // for storing distance and 7 values



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):

1. $=0,0=0 /7S = {u | u's distance is computed} and Q is a min-priority queue
2. Create array d[]1 : |V|], =[1 : | V]|] // for storing distance and 7 values

3. for each vertex v € V(G)



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):

1. $=0,0=0 /7S = {u | u's distance is computed} and Q is a min-priority queue
2. Create array d[]1 : |V|], =[1 : | V]|] // for storing distance and 7 values

3. for each vertex v € V(G)
4

dlv] = o0, 7|v] = oo, Insert(Q, v, z[v]) // Q stores vertices with their x value as key.



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):
1. $=0,0=0 /7S = {u | u's distance is computed} and Q is a min-priority queue

Create array d[1 : |V|], =[]l : | V] ] // for storing distance and 7 values
for each vertex v € V(G)

2
3
4, dlv] = o0, 7|v] = oo, Insert(Q, v, z[v]) // Q stores vertices with their x value as key.
5. n|s] =0, Decrease-Key(Q, s,0)



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):

1. $=0,0=¢ /7S = {u | u's distance is computed} and Q is a min-priority queue

2. Create array d[]1 : |V|], =[1 : | V]|] // for storing distance and 7 values

3. for each vertex v € V(G)

4, dlv] = o0, 7|v] = oo, Insert(Q, v, z[v]) // Q stores vertices with their x value as key.
5. n|s] =0, Decrease-Key(Q, s,0)

6. while O # @



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):

1. $=0,0=0 /7S = {u | u's distance is computed} and Q is a min-priority queue

2. Create array d[]1 : |V|], =[1 : | V]|] // for storing distance and 7 values

3. for each vertex v € V(G)

4, dlv] = o0, 7|v] = oo, Insert(Q, v, z[v]) // Q stores vertices with their x value as key.
5. n|s] =0, Decrease-Key(Q, s,0)

6. while O # @

7. u = Extract-Min(Q) // Ww’s distance is computed



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):

1. $=0,0=0 /7S = {u | u's distance is computed} and Q is a min-priority queue

2. Create array d[]1 : |V|], =[1 : | V]|] // for storing distance and 7 values

3. for each vertex v € V(G)

4, dlv] = o0, 7|v] = oo, Insert(Q, v, z[v]) // Q stores vertices with their x value as key.
5. n|s] =0, Decrease-Key(Q, s,0)

6. while O # @

7. u = Extract-Min(Q) // Ww’s distance is computed

8.

S=8SuU{u}, dlu] = nlu] // Add u to S and update its d



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):

1. $=0,0=0 /7S = {u | u's distance is computed} and Q is a min-priority queue

2. Create array d[]1 : |V|], =[1 : | V]|] // for storing distance and 7 values

3. for each vertex v € V(G)

4, dlv] = o0, 7|v] = oo, Insert(Q, v, z[v]) // Q stores vertices with their x value as key.
5. n|s] =0, Decrease-Key(Q, s,0)

6. while O # @

7. u = Extract-Min(Q) // Ww’s distance is computed

8. S=8SuU{u}, dlu] = nlu] // Add u to S and update its d

9.

for each vertex v € Adj|u]



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):

1. $=0,0=¢ /7S = {u | u's distance is computed} and Q is a min-priority queue

2. Create array d[]1 : |V|], =[1 : | V]|] // for storing distance and 7 values

3. for each vertex v € V(G)

4 dlv] = o0, 7|v] = oo, Insert(Q, v, z[v]) // Q stores vertices with their x value as key.
5. n|s] =0, Decrease-Key(Q, s,0)

6. while O # @

7 u = Extract-Min(Q) // Ww’s distance is computed

8 S=8SuU{u}, dlu] = nlu] // Add u to S and update its d

9 for each vertex v € Adj|u]

10. if z[v] > dlu] + w(u, v) // Recall setting r|[v] = Min(z|v], d[u] + w(u, v))



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):

1. $=0,0=0 /7S = {u | u's distance is computed} and Q is a min-priority queue

2. Create array d[]1 : |V|], =[1 : | V]|] // for storing distance and 7 values

3. for each vertex v € V(G)

4, dlv] = o0, 7|v] = oo, Insert(Q, v, z[v]) // Q stores vertices with their x value as key.
5. n|s] =0, Decrease-Key(Q, s,0)

6. while O # @

7. u = Extract-Min(Q) // Ww’s distance is computed

8. S=8SuU{u}, dlu] = nlu] // Add u to S and update its d

9. for each vertex v € Adj|u]

10. if z[v] > dlu] + w(u,v) // Recall setting n[v] = Min(z[v], d[u] + w(u,v))

11. n[v] = dlu] + w(u, v)



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):

1. $=0,0=0 /7S = {u | u's distance is computed} and Q is a min-priority queue
2. Create array d[]1 : |V|], =[1 : | V]|] // for storing distance and 7 values

3. for each vertex v € V(G)

4, dlv] = o0, 7|v] = oo, Insert(Q, v, z[v]) // Q stores vertices with their x value as key.
5. n|s] =0, Decrease-Key(Q, s,0)

6. while O # @

7. u = Extract-Min(Q) // Ww’s distance is computed

8. S=8SuU{u}, dlu] = nlu] // Add u to S and update its d

9. for each vertex v € Adj|u]

10. if z[v] > dlu] + w(u,v) // Recall setting n[v] = Min(z[v], d[u] + w(u,v))
11. zlv] = dlu] + w(u, v)

12. Decrease-Key(Q, v, [ v])



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):

1. §=0,0=0

2. Create arrayd[l : |V|], =[]l : | V]|]
3. for each vertex v € V(G)

4, d[v] = oo, #[v] = o0, Insert(Q, v, z[Vv])
5. n|s] =0, Decrease-Key(Q, s,0)

6. while O # @&

7. u = Extract-Min(Q)

8. S=8SuU{u}, dlu] = nlu]

9. for each vertex v € Adj|u]

10. if z[v] > dlu] + w(u, v)

11. vl = dlu] + w(u, v)

12. Decrease-Key(Q, v, 7[v])



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):

1. §=0,0=0

2. Create arrayd[l : |V|], =[]l : | V]|]

3. for each vertex v € V(G)

4, d[v] = oo, #[v] = o0, Insert(Q, v, z[Vv])

5. n|s] =0, Decrease-Key(Q, s,0)

6. while O # @&

7. u = Extract-Min(Q)

g S=SU{u}, dul = =u What if v € §?
9. for each vertex v € Adj|u] /
10. if z[v] > dlu] + w(u, v)

11. vl = dlu] + w(u, v)

12. Decrease-Key(Q, v, 7[v])



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):

1. §=0,0=0

2. Create arrayd[l : |V|], =[]l : | V]|]

3. for each vertex v € V(G)

4, d[v] = oo, #[v] = o0, Insert(Q, v, z[Vv])

5. n|s] =0, Decrease-Key(Q, s,0)

6. while O # @&

7. u = Extract-Min(Q)

g S=SU{ul, dul = [u] What it v € §7 Then line 10 condition will be false as
9. for each vertex v € Adj|u] /
10. if z[v] > dlu] + w(u, v)

11. vl = dlu] + w(u, v)

12. Decrease-Key(Q, v, 7[v])



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):

1. $=0,0=0

2. Create arrayd[l : |V|], =[]l : | V]|]
3. for each vertex v € V(G)

4 d[v] = oo, #[v] = o0, Insert(Q, v, z[Vv])
5. n|s] =0, Decrease-Key(Q, s,0)
6. while O # @&

7

3

9

u = Extract-Min((Q)
S=Su{ul, dul = zlu What it v € §7 Then line 10 condition will be false as

for each vertex v € Adj[u] /n[v] became (s, v) earlier and cannot further decrease.
10. if z[v] > d[u] + w(u,v)
11. zlv] = du] + w(u, v)
12. Decrease-Key(Q, v, 7[v])



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):

1. §=0,0=0

2. Create arrayd[l : |V|], =[]l : | V]|]
3. for each vertex v € V(G)

4, d[v] = oo, #[v] = o0, Insert(Q, v, z[Vv])
5. n|s] =0, Decrease-Key(Q, s,0)

6. while O # @&

7. u = Extract-Min(Q)

8. S=8SuU{u}, dlu] = nlu]

9. for each vertex v € Adj|u]

10. if z[v] > dlu] + w(u, v)

11. vl = dlu] + w(u, v)

12. Decrease-Key(Q, v, 7[v])



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):

1. §=0,0=0

2. Create arrayd[l : |V|], =[]l : | V]|]

3. for each vertex v € V(G)

4, d[v] = oo, #[v] = o0, Insert(Q, v, z[Vv])

5. n|s] =0, Decrease-Key(Q, s,0)

6. while Q # & What happens when 7fu] is co?
7. u = Extract-Min(Q) /
8. S=8SuU{u}, dlu] = nlu]

9. for each vertex v € Adj|u]

10. if z[v] > dlu] + w(u, v)

11. vl = dlu] + w(u, v)

12. Decrease-Key(Q, v, 7[v])



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):

1. $=0,0=0

2. Create arrayd[l : |V|], =[]l : | V]|]

3. for each vertex v € V(G)

4, d[v] = oo, #[v] = o0, Insert(Q, v, z[Vv])

5. n|s] =0, Decrease-Key(Q, s,0)

6. while Q # @ What happens when 7fu] is co?
7 u = Extract-Min(Q) / d|u] becoming oo is fine.
8. S=8SuU{u}, dlu] = nlu]

9. for each vertex v € Adj|u]

10. if z[v] > dlu] + w(u, v)

11. zlv] = dlu] + w(u, v)

12. Decrease-Key(Q, v, 7[v])



Dijkstra’s Algorithm: Pseudocode

Dijkstra(G, s):

1. $=0,0=0

2. Create arrayd[l : |V|], =[]l : | V]|]
3. for each vertex v € V(G)

4 d[v] = oo, #[v] = o0, Insert(Q, v, z[Vv])
5. n|s] =0, Decrease-Key(Q, s,0)
6

7

3

9

while O # @ What happens when 7fu] is co?
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Dijkstra(G, s):

1. $=03,0=0 Suppose G has n vertices and m edges.

2. Create arrayd[l : |V|], =[]l : | V]|]

3. for each vertex v € V(G) «—  Cost ot this loop is O(n)

4, d[v] = oo, #[v] = o0, Insert(Q, v, z[Vv])

5. n|s] =0, Decrease-Key(Q, s,0)

6. whileQ#@ «———————————————————— Cost of this loop is O(nlogn + mlogn)

7. u = Extract-Min(Q) (Every vertex is dequeued at most once, and
Q. S=Su{ul, du] = nlu] when dequeued its adjacency list is traversed.)
9. for each vertex v € Adj|u]

10. if z[v] > dlu] + w(u, v)

11. vl = dlu] +wu, v) Time complexity = O(mlogn), when m > n.

12. Decrease-Key(Q, v, 7[v])
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Dijkstra’s Algorithm: DIY

Modity the Dijkstra’s algorithm on the previous slide so that:

® |t uses only one extra array d to calculate distances.

® You can produce shortest paths as well not just distance.



Dijkstra’s Algorithm: History

“What is the shortest way to travel from Rotterdam to Groningen, in general: from given city to given
city. It is the algorithm for the shortest path, which | designed in about twenty minutes. One morning |
was shopping in Amsterdam with my young fiancée, and tired, we sat down on the café terrace to drink a
cup of coffee and | was just thinking about whether | could do this, and | then designed the algorithm for
the shortest path. As | said, it was a twenty-minute invention. In fact, it was published in '59, three years
later. The publication is still readable, it is, in fact, quite nice. One of the reasons that it is so nice was that
| designed it without pencil and paper. | learned later that one of the advantages of designing without
pencil and paper is that you are almost forced to avoid all avoidable complexities. Eventually, that

algorithm became to my great amazement, one of the cornerstones of my fame.”

— Edsger Dijkstra, in an interview with Philip L. Frana, Communications of the ACM, 2001
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Flow Networks

Figure (a) is flow network of a shipping company, where:
® Vertices represent cities. s & 7 are the source & sink cities.

® The number on any (i, v) edge is the maximum number of packets that can go from

i1 to v per day.
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Goal: Find the maximum number of packets that can be shipped from s it the packets received and

sent by intermediate cities are equal in numbers.
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/

# max packets = 23

(b)
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® Fach edge (i, v) € E has a nonnegative capacity c(u,v) > 0.

o |f (u,v) € E, then (v,u) & E. (Reason will become clear soon.)

® It (u,v) & E, we define c(u,v) = 0. No selt-loops are present.
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Defn: A flow network G = (V, E) is a directed graph in which:
® Fach edge (i, v) € E has a nonnegative capacity c(u,v) > 0.

o |f (u,v) € E, then (v,u) & E. (Reason will become clear soon.)
® It (u,v) & E, we define c(u,v) = 0. No selt-loops are present.

® Two distinguished vertices: source s (no incoming edges) and sink 7 (no outgoing edges).
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Flow Networks

Defn: A flow network G = (V, E) is a directed graph in which:
® Fach edge (i, v) € E has a nonnegative capacity c(u,v) > 0.

o |f (u,v) € E, then (v,u) & E. (Reason will become clear soon.)
® It (u,v) & E, we define c(u,v) = 0. No selt-loops are present.

® Two distinguished vertices: source s (no incoming edges) and sink 7 (no outgoing edges).

® Foreveryv € V,some s ~ v ~ [ path exists. Hence, |E| > | V| — 1.
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